|
P. Eisert and B. Girod
* ~5 E O; j z9 A, P3 tUniversity of Erlangen-Nuremberg, Germany
, S/ j9 l5 r* p: B- ]* }; D, c- Q( G
In this paper we present a model-based algorithm for
9 [8 ` _7 y9 C( G) v5 c. ^0 `the estimation of three-dimensional motion parameters6 t' F( R! Z( o) l! V0 z& s( K
of an object moving in 3D-space. Photometric5 W# y5 G" X4 L+ O% s: @
effects are taken into account by adding different illumination
" R7 d& H% l+ J6 Q' k6 h4 vmodels to the virtual scene. Using the additional1 i' a# F" I; e& U6 B3 [4 Q- w
information from three-dimensional geometric( P |3 R# {2 _4 l
models of the scene leads to linear algorithms for
. J9 t$ O! T+ B# [& S* G5 uthe parameter estimation of the illumination models4 g2 C4 a! S: @4 r, A- p
which are all computationally efficient. Experiments
8 M, L- \+ B! ?! \0 c8 x0 Xshow that the Peak Signal Noise Ratio (PSNR) between7 @ m9 Z2 `; t
camera and reconstructed synthetic images can
) \$ z: V9 T! j/ k* lbe increased by up to 7 dB compared to global illumination
o6 ^& ~, `& z0 V% ]1 R: Qcompensation. The average estimation error% M- Q* i b. S& o; Z% F# d
of the motion parameters is at the same time reduced
, B. w. F0 D4 Y+ X. iby 40 %.7 o$ h% v9 q$ h1 H; ~
5 m, ^: Y4 y- v( X @) g[ 本帖最後由 masonchung 於 2008-4-15 07:42 PM 編輯 ] |
本帖子中包含更多資源
您需要 登錄 才可以下載或查看,沒有帳號?申請會員
x
|