Chip123 科技應用創新平台

 找回密碼
 申請會員

QQ登錄

只需一步,快速開始

Login

用FB帳號登入

搜索
1 2 3 4

實現超級電容器備用電源的有效方式

2021-11-12 09:49 AM| 發佈者: SophieWeng@G| 查看: 545| 評論: 0|原作者: Alex Pakosta、Wenhao Wu|來自: 德州儀器

摘要: 許多透過線路輸電來運作的現代智慧型物聯網 (IoT) 裝置,都需要配置備用電源,以確保在意外斷電時,能夠安全關機或執行最後通訊。設計良好的備用電源方案不但能夠提供適當的備用電源電量、還能在一般操作和備用操作 ...
許多透過線路輸電來運作的現代智慧型物聯網 (IoT) 裝置,其實都需要配置備用電源,以確保在意外斷電時,能夠安全關機或執行最後通訊。例如,電錶可透過無線電射頻 (RF) 介面來分享斷電的時間、位置和持續期間等詳細資訊。有鑑於窄頻 IoT (NB-IoT) 具備多種優勢(如下),使得它在近期成為了實現前述功能的熱門選擇:
  • 可使用現有的 2G、3G 和 4G 頻帶。
  • 在美洲、歐洲和亞洲國家/地區擁有一家或多家經營者的支援。
  • 相較於通用封包無線電服務 (GPRS),可大幅降低功率和尖峰電流。

設計良好的備用電源方案不但能夠提供適當的備用電源電量、還能在一般操作和備用操作之間順暢切換,且無須維護即可為多起斷電事件提供支援。在本文中,我們將說明使用 TI 的 TPS61094 升壓/降壓轉換器和單一超級電容器,針對 NB-IoT 和 RF 標準實作備用電源方案的簡單方法。我們也會比較 TPS61094 架構解決方案和現有的 TI 參考設計。

適用於 NB-IoT 的備用電源

表 1 顯示在不同的 NB-IoT 操作模式期間,耗電量隨著時間經過的變化。數據傳輸模式達到 310 mA 峰值的時間為 1.32 秒,而負載則會隨著操作模式不同而大幅變化。整個過程的平均耗電量為 30 mA,花費時間則為 80 秒;而在主要電網突然斷電時,需要具有足夠的備用電源和順暢的電源切換作業,才可因應前述負載期間。TPS61094 60-nA 靜態電流 (IQ) 雙向降壓/升壓轉換器有助於完成可靠且簡單的備用電源設計,同時也能做為單晶片解決方案,無須額外電路就能使超級電容器完成充電與放電。

為了使用單一超級電容器和 TPS61094 實現有效的備用電源電路,在圖 1 中顯示我們如何配置 TPS61094 評估模組 (EVM),以為表 1 中的 NB-IoT 負載分佈情況提供足夠的備用電源。


圖1:TPS61094 EVM 備用電源配置

當系統電源為開啟時,TPS61094 會進入 Buck on 模式,此模式會開啟旁路場效應電晶體 (FET),並向超級電容器供應 500 mA 的定電流,並在超級電容器的電壓達 2.5 V 時停止充電。VSYS 會直接對 VOUT 供電。當斷電造成 VSYS 下降時,TPS61094 會自動進入 Boost on 模式,同時關閉旁路 FET,並以儲存在超級電容體中的能源向 VOUT 供電。


圖 2 顯示完整備用電源週期的示波器量測結果。VIN 代表來自電網的系統電壓。VOUT 是來自 TPS61094 的輸出電壓,而 VSUP 則是超級電容器的電壓。IOUT 則表示負載耗電量。在此範例中的負載是 100 mA,為負載輪廓平均耗電量的 3.33 倍。我們提高了負載,以判斷在更為極端的負載條件下,TPS61094 如何在電網斷電時切換輸入電源。


在系統電源突然斷電時,TPS61094 會立即進入 Boost on 模式,並使用來自超級電容器的電源調變 VOUT。降壓/升壓轉換器會供應所需的輸出電流達 254.5 秒,等同於 11.5 次 NB-IoT 交換。TPS61094 會將超級電容器放電,直到其電壓下降至 0.7 V;這時該產品會進入關機模式,直到系統 VIN 回復為止。在 Buck on 模式中,TPS61094 會順暢地以定電流為超級電容器充電。如圖 2 所示,超級電容器放電和充電之間的切換作業相當平順。


圖2:TPS61094 電源週期量測結果

其它備用電源實作形式

您也可選擇其它解決方案,而每項解決方案都各有利弊。適用於電錶的超級電容器備用電源參考設計採用離散式電路為超級電容器充電,並使用 TPS61022 升壓轉換器,以在電網斷電時將超級電容器的電壓提升至較高的系統電壓。TPS61022 的輸出電流能力高於 TPS61094 解決方案,但是需要更多外部零組件。


另一種方法則是具有電流限制和主動式電池平衡功能的超級電容器備用電源參考設計,此方法採用 TPS63802 降壓升壓轉換器做為超級電容器充電器和電壓穩壓器,並且省去了額外的離散式充電電路。不過此方法仍需要額外的外部零組件,才能實現電源 ORing、充電電流限制和超級電容器端電壓設定。


表 2 列出了每種備用電源方法最重要的特性。

結論

低功率的無線標準正逐漸普及。就採用 LTE-M、Lora、藍牙和其它新興無線介面的備用電源應用而言,若要實現高度整合、簡單設計和最佳低負載效率的目標,TPS61094 是十分理想的選擇。

若您需要更高的輸出電流,那麼電錶或電流限制參考設計會是非常有效的解決方案。雖然這類解決方案需要採用更多離散式零組件,但卻可支援 GPRS 等較高功率的 RF 傳輸作業。

相關閱讀

您對這篇文章有任何想法嗎?歡迎留言給我們。
您的姓名:
您的電子郵件:
標題:
內容:



首頁|手機版|Chip123 科技應用創新平台 |新契機國際商機整合股份有限公司

GMT+8, 2025-1-23 02:15 AM , Processed in 0.109200 second(s), 16 queries .

Powered by Discuz! X3.2

© 2001-2013 Comsenz Inc.

返回頂部